Theoretical Analysis of Adversarial Learning: A Minimax Approach
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MAIN CONTRIBUTIONS

= Propose a general method for analyzing the risk bound in the presence of adversaries. Our
method is general in several respects. First, the adversary we consider is general and
encompasses all [, bounded adversaries. Second, our method can be applied to multi-class
problems and commonly used loss functions such as the hinge loss and ramp loss.

= Prove a new bound for the local worst-case risk under a weak version of Lipschitz condition.

= Derive the adversarial risk bounds for SVMs and deep neural networks. Our bounds have two
data-dependent terms, suggesting that minimizing the sum of the two terms can help achieve
adversarial robustness.

ADVERSARIAL LEARNING

The adversarial learning problem can be described as follows.

= The learner receives n training examples denoted by S = ((x1, y1), (x2,42), - - - , (T, ypn)) drawn
.I.d. from P and tries to select a hypothesis h € H that has a small expected risk.

= However, in the presence of adversaries, there will be imperceptible perturbations to the input
of examples, which are called adversarial examples.

= \We assume that the adversarial examples are generated by adversarially choosing an example
from neighborhood N(z) = {2’ : 2’ — x € B} where Bis a nonempty set. The radius of the
adversary is defined as eg := sup, e dy(x,0)

To measure the learner’s performance in the presence of adversaries, we define the adversarial ex-
pected risk of a hypothesis h € H as

Rp(h,B) = E(x,y)wP[x/glj%}((w) l(h(l’/), y)l.

If eg = 0, then the adversarial expected risk will reduce to the standard expected risk without an
adversary.

Since the true distribution is usually unknown, we instead consider adversarial empirical risk.
n
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MINIMAX LEARNING

= Wasserstein distance between two probability measures P, @) € P,(Z) is defined as

Wy(P.Q):= inf (B, .n_rld%(z, 2P,
p(P, Q) MEF(P,Q)( (2,27) Ml Z( )])
where I'( P, Q) denotes the collection of all measures on Z x Z with marginals P and Q on the
first and second factors, respectively.
= The local worst-case risk of h at P,

Rep(P h) = sup  Rg(h),
QeBl(P)

where BEV}Z/?(P) ={Q € Pp(Z) : Wy(P,Q)) < e} is the p-Wasserstein ball of radius e > 0
centered at P.

MAIN RESULTS

Motivation

= The adversarial expected risk over a distribution P is equivalent to the standard expected risk
under a new distribution P’

= \We can show that all these new distributions locate within a Wasserstein ball centered at P.

= By considering the worst case within this Wasserstein ball, the original adversarial learning
problem can be reduced to a minimax problem, and we can use the minimax approach to derive
the adversarial risk bound.

Proposed method

= Defineamapping1}y, : Z2 — Z
= (z,y) = (z",y),
where 2™ = arg max /¢ v (y) [(h(z),y).
= Let P’ = T}, #P, the pushforward of P by T}, we have
W,(P, P') < eg.

= Therefore, the relationship between local worst-case risk and adversarial expected risk is as
follows.
RP(h,B) < REB,l(Pa h)a Vh € H.

Local worst-case risk bound

" Assume that for any function f € F andany z € Z, there exists A ¢, such that
f(') = f(2) < Xf.dz(z,2) forany 2’ € Z.
" Let A7 p ==inf{A 4y p, (N) = 0} where vy p () = Ep, (supre z{f(2) — Az (2, 2') — f(2)}).

= Strong duality result for local worst-case risk by Gao & Kleywegt [2].
For any upper semicontinuous function f : Z — Rand for any P € P,(Z),

R (P f) = &ﬂ;lol{)\% +Eploy 1(2)]},

where ) ¢(2) == supycz{f(z') = A-dz(z,2)}.

Lemma 1. Fix some f € F. Define A via

A= argmin{Aep + Ep [p) #(2)]}.

A>0
Then
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where Xy p 1= sup{A : ¢y p, (A) = )‘}F,Pn ceg} iftheset {\ : ¢y p (A) = )\}F’Pn . €5} is nonempty,

otherwise Af,Pn = ().

Lemma 2. Under the assumptions, for any f € F, we have
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with probability at least 1 — 6.

Adversarial risk bounds
Theorem 1. Under the assumptions, for any f € F, we have

24¢ 12 | log(3)
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with probability at Ieast 1 — 6.
EXAMPLE BOUNDS

Apply Theorem 1 to two commonly-used models: SVMs and neural networks.

Support vector machines

Corollary 1. In the SVMs setting, for any f € F, with probability at least 1 — 4,

=
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Rp(f,B) < — z 1f(zz)+)\fpnelg+\/ﬁAr\/ZZ+T\7/l_A€B~(2r+1)+(1+Ar) O;J?i)’

where )\}ipn < miaX{Qyiw -z, ||wl|2}

Neural networks

Corollary 2. In the neural networks setting, for any f € F, with probability of 1 — 4, the following
inequality holds
2
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where )‘}_P < max { H pil|A;] \g, M(H A(x}), y;) + max H 4(z;) — min H 4(x;)) }

REMARKS

There are two data dependent terms 1/n > 1" f(z;) and )\}Fpnelg in our bound, suggesting the fol-
lowing optimization problem for adversarial robustness.

;’rél?rﬁzf 2;) +)\an63

However, since )\}EPH is computationally intractable in practice, instead of using the exact Af P, N

the objective function, we may consider the data-dependent upper bound for )\f P, which is usually
easier to obtain and a regularization parameter n € |0, 1] selected via grid search.
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