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MAIN CONTRIBUTIONS

Propose a general method for analyzing the risk bound in the presence of adversaries. Our

method is general in several respects. First, the adversary we consider is general and

encompasses all lq bounded adversaries. Second, our method can be applied to multi-class
problems and commonly used loss functions such as the hinge loss and ramp loss.

Prove a new bound for the local worst-case risk under a weak version of Lipschitz condition.

Derive the adversarial risk bounds for SVMs and deep neural networks. Our bounds have two

data-dependent terms, suggesting that minimizing the sum of the two terms can help achieve

adversarial robustness.

ADVERSARIAL LEARNING

The adversarial learning problem can be described as follows.

The learner receives n training examples denoted by S = ((x1, y1), (x2, y2), · · · , (xn, yn)) drawn
i.i.d. from P and tries to select a hypothesis h ∈ H that has a small expected risk.

However, in the presence of adversaries, there will be imperceptible perturbations to the input

of examples, which are called adversarial examples.

We assume that the adversarial examples are generated by adversarially choosing an example

from neighborhoodN(x) = {x′ : x′ − x ∈ B}whereB is a nonempty set. The radius of the

adversary is defined as εB := supx∈B dX (x, 0)

Tomeasure the learner’s performance in the presence of adversaries, we define the adversarial ex-

pected risk of a hypothesis h ∈ H as

RP (h,B) = E(x,y)∼P [ max
x′∈N(x)

l(h(x′), y)].

If εB = 0, then the adversarial expected risk will reduce to the standard expected risk without an
adversary.

Since the true distribution is usually unknown, we instead consider adversarial empirical risk.

RPn(h,B) = 1
n

n∑
i=1

[
max

x′∈N(xi)
l(h(x′), yi)

]
.

MINIMAX LEARNING

Wasserstein distance between two probability measures P,Q ∈ Pp(Z) is defined as

Wp(P,Q) := inf
M∈Γ(P,Q)

(E(z,z′)∼M [dpZ(z, z′)])1/p,

where Γ(P,Q) denotes the collection of all measures onZ × Z with marginals P andQ on the

first and second factors, respectively.

The local worst-case risk of h at P ,

Rε,p(P, h) := sup
Q∈BWε,p(P )

RQ(h),

whereBWε,p(P ) := {Q ∈ Pp(Z) : Wp(P,Q)) ≤ ε} is the p-Wasserstein ball of radius ε ≥ 0
centered at P .

MAIN RESULTS

Motivation

The adversarial expected risk over a distribution P is equivalent to the standard expected risk

under a new distribution P ′.

We can show that all these new distributions locate within aWasserstein ball centered at P.

By considering the worst case within thisWasserstein ball, the original adversarial learning

problem can be reduced to a minimax problem, and we can use theminimax approach to derive

the adversarial risk bound.

Proposedmethod

Define amapping Th : Z → Z
z = (x, y) → (x∗, y),

where x∗ = arg maxx′∈N(x) l(h(x′), y).
Let P ′ = Th#P , the pushforward of P by Th, we have

Wp(P, P ′) ≤ εB.

Therefore, the relationship between local worst-case risk and adversarial expected risk is as

follows.

RP (h,B) ≤ RεB,1(P, h), ∀h ∈ H.

Local worst-case risk bound

Assume that for any function f ∈ F and any z ∈ Z , there exists λf,z such that

f (z′) − f (z) ≤ λf,zdZ(z, z′) for any z′ ∈ Z .

Let λ+
f,Pn

:= inf{λ : ψf,Pn(λ) = 0}where ψf,Pn(λ) := EPn(supz′∈Z{f (z′) − λdZ(z, z′) − f (z)}).
Strong duality result for local worst-case risk by Gao & Kleywegt [2].

For any upper semicontinuous function f : Z → R and for any P ∈ Pp(Z),
RεB,1(P, f ) = min

λ≥0
{λεB + EP [ϕλ,f (z)]},

where ϕλ,f (z) := supz′∈Z{f (z′) − λ · dZ(z, z′)}.

Lemma 1. Fix some f ∈ F . Define λ̄ via

λ̄ := arg min
λ≥0

{λεB + EPn[ϕλ,f (Z)]}.

Then

λ̄ ∈


[0, M
εB

] if εB ≥ M

λ+
f,Pn

[λ−
f,Pn

, λ+
f,Pn

] if εB <
M

λ+
f,Pn

,

where λ−
f,Pn

:= sup{λ : ψf,Pn(λ) = λ+
f,Pn

· εB} if the set {λ : ψf,Pn(λ) = λ+
f,Pn

· εB} is nonempty,
otherwise λ−

f,Pn
:= 0.

Lemma 2. Under the assumptions, for any f ∈ F , we have

RεB,1(P, f ) −RεB,1(Pn, f ) ≤ 24C(F)√
n

+ 12
√
π√
n

ΛεB · diam(Z) +M

√
log(1

δ)
2n

with probability at least 1 − δ.

Adversarial risk bounds

Theorem 1. Under the assumptions, for any f ∈ F , we have

RP (f,B) ≤ 1
n

∑n
i=1 f (zi) + λ+

f,Pn
εB + 24C(F)√

n
+ 12

√
π√
n

ΛεB · diam(Z) +M

√
log(1

δ)
2n

with probability at least 1 − δ.

EXAMPLE BOUNDS

Apply Theorem 1 to two commonly-usedmodels: SVMs and neural networks.

Support vectormachines

Corollary 1. In the SVMs setting, for any f ∈ F , with probability at least 1 − δ,

RP (f,B) ≤ 1
n

∑n
i=1 f (zi) + λ+

f,Pn
εB + 144√

n
Λr

√
d + 12

√
π√
n

ΛεB · (2r + 1) + (1 + Λr)

√
log(1

δ)
2n

,

where λ+
f,Pn

≤ max
i

{2yiw · xi, ||w||2}.

Neural networks

Corollary 2. In the neural networks setting, for any f ∈ F , with probability of 1 − δ, the following
inequality holds

RP (f,B) ≤ 1
n

∑n
i=1 f (zi) + λ+

f,Pn
εB + 288

γ
√
n

L∏
i=1
ρisiBW

 L∑
i=1

(
bi
si

)1
2
2

+ 12
√
π√
n

ΛεB · (2B + 1) +

√
log(1

δ)
2n

,

where λ+
f,Pn

≤ max
j

{
2
γ

L∏
i=1

ρi||Ai||σ,
1
γ

(
M(HA(xj), yj) + max HA(xj) − min HA(xj)

)}
.

REMARKS

There are two data dependent terms 1/n
∑n
i=1 f (zi) and λ+

f,Pn
εB in our bound, suggesting the fol-

lowing optimization problem for adversarial robustness.

min
f∈F

1
n

n∑
i=1

f (zi) + λ+
f,Pn

εB.

However, since λ+
f,Pn

is computationally intractable in practice, instead of using the exact λ+
f,Pn

in

the objective function, wemay consider the data-dependent upper bound for λ+
f,Pn

which is usually

easier to obtain and a regularization parameter η ∈ [0, 1] selected via grid search.
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